第271章 這還用說?
質數,也就是素數。
指的是大於1的自然數,除了1和它自身外,不能被其他自然數整除的數。
素數的個數是無窮的,關於這一點的證明,古希臘數學家歐幾里得早在他的著作《幾何原本》中便給出了經典的證明。
也因爲素數的個數是無窮的,所以就有人會問,素數的分佈規律是什麼?
100000以下有多少個素數?
一個隨機的100位數多大可能是素數?
這也就促進了數論這門純數學科的發展,也就有了是否每個大於5的偶數都可寫成兩個素數之和的哥德巴赫猜想。
也就有了是否存在無窮多的孿生素數,斐波那契數列內是否存在無窮多的素數,是否有無窮多個梅森素數,是否存在無窮個形式如X+1的素數,諸如此類的問題。
這裡面,有像“在一個大於1的數和它的2倍之間,必定存在至少一個素數”,“存在任意長度的素數等差數列”這樣利用素數定理解決的問題。
但更多的,還只是一個猜想。
如果要分級的話,陳舟現在研究的克拉梅爾猜想,大概在梅森素數問題之上,在傑波夫猜想和孿生素數猜想之下。
一看到沈靖,陳舟便笑着問道:“學長,咋樣?留下的感覺不錯吧?”
沈靖默然不語,他很想說,除了學習和研究的地方,還有嗎?
陳舟:“沒什麼……那啥,感謝吳博士的關心,不過,這還用說嗎?”
陳舟忍住笑意,打趣道:“男人嘛,怎麼能說自己不行?”
因爲改進後的問題,其素數間隔仍是小於克拉梅爾猜想的。
陳舟解決的思路和愛多士猜想的證明方法一樣,是基於一個建立大素數間隔的簡單方法。
陳舟想到沈靖電話裡說吳博士有事情交代,便問道:“學長,你說吳博士交代了點事情?”
這裡的N指的便是大於等於7的任意自然數。
所以,現在的陳舟有點不敢確定,自己的想法,究竟是不是對的。
沈靖:“……”
聽到這話,沈靖沒好氣的說道:“不爽!”
並不像一開始,他嘗試用這種方法去解決克拉梅爾猜想那般。
一個大的素數間隔相當於兩個素數之間的一長列非素數,或者稱爲複合數。
陳舟等了一會,見沈靖似乎說完了,便問道:“沒了?就這?”
這列數字就變成了101!+2,101!+3,101!+4,……,101!+101。
因爲101!可以被從2到101的數字整除,因此這列數字的每個數都是複合數。
兩者之間的差別便是,將(logPn)改爲了logN(logN-loglogN)+2,且取N≥7。
也就是101!+2可以被2整除,101!+3可以被3整除,以此類推。
這種狀態,也是陳舟最爲熟悉和喜歡的狀態。
放下筆,伸手揉了揉太陽穴,陳舟的表情有點古怪。
幾人又簡單閒聊了幾句,陳舟拿出手機打了個電話。
一個歷時近百年,沒有人能夠接近證明的數學猜想,他居然發現好像有點不對,需要去修正。
等到陳舟和楊依依來到食堂時,沈靖已經在食堂門口等着了。
沈靖這邊沉默了兩秒,才說道:“好吧,你除了去圖書館,也沒地方去了……”
陳舟聽完,不禁哈哈大笑起來。
下午六點,陳舟和楊依依手拉手走出圖書館。
陳舟應道:“好,我和依依去食堂,你過來吧。”
沈靖不解的看着陳舟:“就這些啊,怎麼了?”
沈靖隨即便開始了吐槽,把他還沒開始裝逼,就被人硬生生打斷,然後還幫陳舟裝了波逼的原委,全吐了出來。
陳舟改進的只是一個更爲溫和的猜想。
如果獲得複合數列表是可能的,那麼便可以以此進行素數間隔問題的研究。
“沒,沒什麼……”陳舟略顯尷尬,他還以爲吳馨月博士有什麼課題上的事要交代呢,結果是這件事。
這種簡單方法,其實是高中代數方法的細微變形。
沈靖點點頭,沉吟了一下,說道:“是交代了點事情。吳博士希望,希望你不要放棄材料學上面的天賦,她覺得你一定能在這方面做出一些成就。”
“log”則是自然對數的簡寫。
既然回到了燕大,回到了先前的學習生活節奏,那陳舟的身旁,自然有着楊依依陪伴。
就像2014年,陶哲軒他們證明的愛多士猜想一樣。
因爲陳舟並不是證僞了,只是找到了“改進”之後的質數間距的猜想。
沈靖聞言,皺眉看着這對情侶,輕嘆了口氣:“唉,我也是這麼想的,可是學不來呀!他能一個星期學會那麼多東西,還把課題解決了,可我不行呀……”
楊依依在一旁也忍不住輕聲笑道:“學長,這是你沒有把握機會呀,你多學學他,不就行了?”
這樣想着的陳舟,重新拿起了筆,就打算先解決這個改進的問題。
如果從這個問題的解決中,能夠得到一點啓發,說不定就能順勢解決克拉梅爾猜想的問題了。
陳舟頓時不樂意道:“誰說的,還有物院,還有加速器的實驗室,我都可以去啊!”
陳舟回道:“剛從圖書館出來。”
本來和楊依依打算直接去食堂吃蓋澆飯的,卻沒想到沈靖的電話打了過來。
而克拉梅爾猜想的表述是【limn→∞sup(Pn+1-Pn)/(logPn)=1】。
每次擱下筆,一扭頭就能看到最愛的女孩,真的很好。
陳舟驚訝的問道:“怎麼可能?我都走了,他們肯定有很多問題追着你問呀?這不就是你的表演時間嗎?”
沈靖看了陳舟一眼,無奈說道:“我也以爲是這樣呀,可事實不是啊……”
陳舟接通了電話:“學長,回來了?”
簡單舉個例子,先從數字2,3,4,……,101開始。
而且其價值是小於卡拉梅爾猜想的。
一下午的時間,陳舟在圖書館裡,全身心研究着克拉梅爾猜想的修正問題。
即使證明出來,也並不能說明克拉梅爾猜想就是錯的。
雖然沒有解決問題,但是陶哲軒等五位教授的研究方法,還是給了陳舟不少收穫的。
草稿紙上,寫着的是:
其實說不對的話,用詞是不恰當的。
沈靖:“你以爲是什麼?”
【N以內相鄰素數最大間隔的猜想,(Pn+1≤N)max(Pn+1-Pn)≈logN(logN-loglogN)+2(N≥7)】
但沈靖最終沒有這麼說,他說道:“我來找你吧,吳博士那邊交代了點事情。”
沈靖說道:“是啊,剛到學校,你在哪呢?”
沈靖:“……”
然後每個數加上101的階乘,也就是101!。
晚上,還是出去吃一頓吧。
現在沈靖回來,正好把方結明也喊上。
方結明在這次課題上,沒二話便答應幫忙,陳舟還是記着的。
等到和方結明會和,四人便徑直出了校門,就近找了一家烤魚店。
(本章完)